ProjectEuanthe

Stealth Address State Flotation Reduction.

Research Draft v1 draft@projecteuanthe.org May 20, 2021

1 Introduction

ProjectEuanthe is a set of Decentralized Invisible Transaction (DIT) instances built on Ethereum. Euanthe deals with two modules namely ebb and elara, with distinguishable schemes leading to private transactions on the layer 1 Ethereum blockchain, through invisible addresses and shielded contract respectively. This paper deals with the solution to the problems of reducing search time in stealth address schemes focused on ebb's stealth address implementation.

2 Analysis

2.1 Security and Efficiency of ebb v1

In Ebb's DIT scheme, the system expects 32 byte random number for *r*, but can perform strongly with 16 bytes of data. The protocol uses elliptic curve cryptography and features its properties in this scheme.

The security provided by Elliptic Curve is equal to the half the size of the private keys of Ethereum, i.e., 16 bytes. Ebb stretches for maximum security. secp256k1 or Koblitz elliptic curve has some special properties that helps in performing group operation more efficiently.

In systems like ebb there exists a O(N)/O(1) trade off, namely if a sender only modifies O(1) number of bits, then recipient necessarily needs to perform a O(N) scan to search for its match. It is possible to achieve $O(\log n)/O(\log 1)$ scan but it requires huge group elements. One of the solutions for overcoming such a trade-off is having separate spend and view keys and handing over the pk_view and pub_Spend keys to an oracle system that can compute the proof for O(N) transactions and can inform recipients via push notifications for an incoming transaction.

2.2 Alternative Design Ideation for ebb

The following scheme takes into advantage the property of subgroup hiding assumptions in groups of unspecified order. This enables the system to hide a few bits of information that is sent to the public and the sender registers a true value to the recipient while registering false to all the other member of the anonymity set, $\{n_d > 0\}$. This acts as a turnaround to avoid computing 64 bits of O(N) transactions, for each account.

Setup. Participant, i generates two safe primes, $d_i = 2d_i + 1$ & $k_i = 2k_i + 1$ and calculates $n_i = d_i k_i$. The system wraps the result of, $|\mathbf{z}_{ni}| = 4d_i k_i = 4n_i$ and randomly chooses g_i , u_i of order n_i in Z_{ni} . The user encodes $h_i = u_i^{ki} \mod n_i$ and publishes his public key as (n_i, g_i, h_i) .

Counter Init. Participant i initializes a public register S^i to $h_i^{ri} \mod n_i$ for a random value r_i and sets the secret register ω_i to 1.

Send. A sender wants to transmit a secret bit b to user i:

- If b = 1, he chooses random a and computes $w_i = g_i^a \mod n_i$;
- if b = 0, he chooses random b and computes $w_i = h_i^b \mod n_i$;

The protocol then changes the user's public counter to $S_i = S_i . w_i \mod n_i$.

Receive. User i computes $s_i = S_i^{di} \equiv g_i^{di\sum ldi} \mod n_i$ and checks if s_i is equal to ω_i . If they're equal, the address then received only 0 bits from his last check. If not, he received at least one 1 bit and updates his secret register ω_i as $\omega_i = s_i$.

Counter Reset. After receiving one or more 1 bit, each user i could reset his public register by computing $w_i = S^{qi-1} \cdot h_i^{ri}$ for random r_i and letting $S_i = S_i$. $w_i \mod n_i$. He then resets his secret register ω_i to 1.

2.2.1 Spread Nullification

- The Chinese Remainder Theorem can be used to aggregate all the values w_i to a single public value w_i , so that w satisfies $w \equiv h_j^{bj} \mod n_j$ for $j \neq i$ and $w \equiv g_i^a \mod n_i$. In this case the counter updates' can be publicly performed by third parties, but the size of w remains O(M) where M is the number of users in the anonymity set z_i .
- Senders possess the capability to privately modify the public registers, while other updates can be delegated by publishing an aggregated value *w* on/off-chain. To hide senders' actions, some updates can be performed in the network like sending 0 bits to random users.
- To allow receivers know how many 1 bits value they received, the sender when sending the 1 bit to user i could compute the value $w_i = g_i$. h^b mod n_i , with b random instead (the h^b_i blinds the g_i when the public counter is updated). In that case the receiver has to brute force $S^{di}_i \equiv g^{di\sum l di}_i$ mod n_i in base g^{di}_i . It would be important to restrict the usage of no high ordered g_i is used (i.e. all a_l are at most 1).
- The Counter reset operation is optional and indistinguishable from a normal Send. If the receiver keeps tracks of how many 1 bit, he received a brute force could be performed on basis rounds.
- The secret register ω_i defines and underlying notion of time: for example, the receiver could regularly checks at intervals of k blocks his public register by checking if he received 1 or more 1 bits: if $S_i^{di} \mod n_i$ is different from the last checked secret register ω_i , it means that some sender multiplied his public register with a random n -order element and so there are new stealth transactions addressed to him in the last k blocks.

3 Conclusion

This paper describes the architecture to successfully minimize end machine load bearings to carry out key pair matches through secret S from the ECDH. The Scheme for constructing this into the Ebb's DIT, maintains Receiver anonymity, due to the difficulty found in ECDLP. Cryptographic hash functions are used for updating the shared secret continuously for n^{th} transaction. If adversary compromises a particular device and obtains h_l of l^{th} transaction, the adversary still won't be able to link previous transactions because of the inherent properties of the hash function.

References

- [EBB] draft@projecteuanthe.org "projecteuanthe/ebb: A modular DIT instance".
- [FMD] Gabrielle Beck, Julia Len, Ian Miers, Matthew et al. "Fuzzy Message Detection".
- [Ped] Gary Yu. "Blockchain Stealth Address Schemes".